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Exact solution for a two-stage stochastic evolution system
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We obtain an analytical closed-form solution for a two-stage stochastic evolution system with time-
independent transition rate parameters, which serves as a model for carcinogenesis. It is shown that the
asymptotic probability of reaching the final stage never becomes unity in contrast to the deterministic
stochastic model results available in literature. We also show that the first mutation event is more im-

portant than the second mutation.

PACS number(s): 02.50.—r, 05.40.+j

Stochastic evolution models find extensive use in many
areas of physics, chemistry, and biology [1,2]. Here we
consider a two-step model, incorporating birth and death
processes. In this model a member of the system starting
from stage S reaches the final stage M via an intermediate
stage I (Fig. 1). Parameters «,,, 3,,, and u,, (n =1,2) are
the transition rates of the different pathways of the sys-
tem. The number of members present in different stages
determines the state of the system. Such a two-step pro-
cess has been used as a model for carcinogenesis [3]. In
this model S, I, and M represent the healthy, intermedi-
ate, and malignant stages, respectively, of a cell. D in Fig.
1 denotes a differentiated or a dead cell, which goes out
of the system. Knudson [4] has shown that a few types of
cancers have, in fact, just two stages of evolution. Hence-
forth we will use the language of “biological cells.” This

would, however, not restrict the use of this model in oth-
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By defining a probability generating function,
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FIG. 1. A schematic representation of a two-stage stochastic
evolution system.
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er similar areas of two-stage stochastic evolution systems.
For detailed biological assumptions under which this
model is applicable we refer the reader to Moolgavkar
and Luebeck [5]. Such a model, where both stages evolve
stochastically, has not been solved exactly so far. We
present in this Brief Report a closed-form analytical solu-
tion of such a two-step system. The quantity of interest is
the time-dependent probability of ending up with at least
one malignant cell, given that we start with a single
healthy cell at ¢ =0.

Let P, ; ,(2) be the conditional probability of having ex-
actly i healthy cells, j intermediate cells, and k malignant
cells at any time ¢ provided that, to start with, there is
one normal cell and no intermediate and malignant cells
at time ¢ =0. The balance equation for the change of
P, ; (1) with time is given by
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multiplying it by Eq. (1) and carrying out the summation,
we get

d¥Y(X,Y,Z,t)
Y= dt
={(,U1XY+G1X2+BI)_K1X} %
) AW
+{(YZ +ay Y2 +By) —K, Y] 50 @)

where K, =a, +, +u,; (n =1,2). This equation is to be
solved with the initial condition

V(X,Y,Z,0)=X

Our quantity of interest, however, is 1—W%¥(1,1,0,1),
which represents at any time ¢ the probability of causa-
tion of malignancy, to be designated as P(¢).
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CLOSED-FORM SOLUTION

Following the method of characteristics, the subsidiary
equations from the partial differential equation (2) are

%=o, 3)

%TY=K2Y——(;¢2YZ+a2Y2+BZ), (4)
and

-‘%=K1X—(MIXY+a1X2+ﬁI) . (5

From Eq. (3), using Z=const=0 [since our interest is
¥Y(X,Y,0,1)], Eq. (4) can easily be solved, and the con-
stant trajectory solution in the (Y,?) plane is given by

A=[|Y—=C,|/|Y —C,|lexp(—pt) , (6)

where A is the integration constant, p =a,(C,—C,), and
C, and C; are the two roots of Y’—(K,/a,)Y
-+ (Bz /a2 )=0.

By using the following transformation we define a new
dependent variable U given by X =(1/a,U)dU /dz.
J

2

P21+ 422X 4 [2p%wz(1+ Az)+pz (R +52)] %
dz? dz
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From Eq. (6), using
_ C+C, 4 explpt)
14+ A4 exp(pt)

Eq. (5) transforms into a second-order differential equa-
tion given by

d?U duU Ky—p(C+C, 4e”)
dt? dt 1+ Ae?

Now, a further transformation on ¢ defined by e”'=z
gives in place of Eq. (7) the new equation

d*u au
7 +pz(R +Sz)—d-;+alﬁ'1(l+Az)U=0 ,

+a,8,U=0 . @)

p’zH(1+ Az)

(8)
where
R=p—K,+u,C,
and
S=A4((p—K,+pn,C,) .

Now using yet another transformation, U =(z)"y, in Eq.
(8), we get the differential equation

+[{p?Aw(w —1)+pSw + Aa,B;}z + {p*w(w —1)+pwR +a B}y =0. (9

Now, in order to reduce this equation to a standard hy-
pergeometric equation we impose the constraint

p*w(w—1)+pwR +a,8,=0, (10)
which implies two values of w, namely,

w;=[(p —R)+{(p —R)*—4a,8,}'*1/2p ,
and 1y

w,=[(p —R)—{(p —R)*—4a,3,}'"*1/2p .
With the constraint (10), Eq. (9) reduces to

2
p22(1+ 42052 4+ [2p%0 (14 A2)+p (R +52)] %
dz? dz

+[p2Aw (w —1)+pSw + Aa,Bly=0. (12

Now substituting 4z = —0, Eq. (12) reduces to the stan-
dard hypergeometric equation

d?y QupA +S 2wp +R | dy
0*—0 0— ==
( )d62 pA D de
Sw 2 _
+ w(w—1)+;2—+a1[3’1/p y=0. (13)

The most general solution of Eq. (13) is given as
y=LF(a,b,c,0)+M6' °F(a —c +1,b —c +1,2—¢,0)
=LF(1)+M6'"°F(2), (14)

where F is the hypergeometric function. For brevity we
will write F(a,b,c,0)=F(1) and F(a—c+1,b—c
+1,2—¢,0)=F(2). a, b, and c are given by the relations

a+b=2w+S/pA—1, (15)
ab=w(w—1)+Sw/pA +a,B,/p*, (16)
and
c=2w+R/p . (17)

L and M in Eq. (14) are the integration constants to be
determined by using the initial conditions. Now, restor-
ing the transformations 6= — Az=— A4 exp(pt) and
U =yz¥=y exp(pwt) in Eq. (14), we get

U=-exp(pwt)M [(L/M)F (1)+{— A exp(pt)}' " “F(2)],

(18)
or, in terms of the original variables X, Y, and ¢ (where X
was transformed as X ={dU /dt}/a,U, we get from Eq.
(18)

a1X=‘fi—(t]/U
=pw +[NF(1)+{— 4 exp(pt)}! " CF(2)]"!
x%[NF(lH—{-—A exp(pt)} ~CF(2)]

(19)

where N =L /M is the new constant. From Eq. (19), N is
given by
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F'(2){— A exp(pt)}! " C+F(2) %{ — A exp(pt)} 7€ | +[pw —a, X][F(2){ — 4 exp(pt)} '~ €]

N= a, XF(1)—F'(1)—F(1)pw : 20

This is the required constant trajectory solution in the (X, ) plane corresponding to Eq. (5). Here the primes on hyper-
geometric functions F (1) and F(2) denote the differentiation with respect to time. Now in order to find the solution for
the survival function W(X, Y,Z =0,¢), we write, from Eq. (6),

A(t=0)=Ao:|Y_C1|/|Y'—C2| s
and from Eq. (20),

(— A " IF(2)+Fo(2){p(w +1—c)—a, X} ]

(21)

N(t=0)=N,=
(1 =0)=No (@, X —pw)Fo(1)—Fj(1)

(22)

(Fy, Fy, etc., are the values of the hypergeometric functions and their derivatives at  =0.)

Equation (22) gives

[N {pwFo(1)+Fo(1)} 1+ [F5(2)+Fo(2)(w +1—c)p](— 4)' ¢

(23)

X 1-C
N0a1F0(1)+a1F0(2)('—A0)

Now invoking initial condition W(X, Y,Z,0)=X, we see that the actual functional form of ¥(X, Y,Z =0,0) is given by
Eq. (23) itself. Now the survival function at any time ¢, i.e., ¥(X, Y,0,?), is found by restoring the time dependence in
Ny and A4, i.e., by using N and 4 in place of Ny and A4 in Eq. (23). After a little algebra we get from Eq. (23)

W(X,Y,0,2)=(exp{p(1—c)t}[pwFy(1)+Fo(1)][F'(2)+F(2){p(w +1—c)—a;X}]
—[Fo(2)(w +1—c)p +Fy(2) ][ {pw —a, X }F(D)+F'(1)])
X(exp{p(1—c)t}[a\ Fo( D][F(2){(w +1—c)p —a; X} +F'(2)]
—[a,Fo(2)][{pw —a, X }F()+F' ()]~ . (24)

This is the exact closed-form solution of the two-stage
stochastic-stochastic model. The quantity of interest,
P(t), can now be obtained from

P(t)=1—W¥(1,1,0,2) . (25)

Taking t — oo as the limit in Eq. (25) (using proper lim-
iting values of the hypergeometric functions and their
derivatives) we find that P(¢t)~1—Pw, /e, i.e., the prob-
ability of reaching the final stage (malignancy in the bio-
logical case) never becomes 1, in contrast to the approxi-

mate results of Moolgavkar, Dewanji, and Venzon [6] or
the deterministic stochastic model results of Quinn [7].
Their asymptotic value of P(t) is always 1. Another im-
portant feature to be seen in the present work is that the
first event (mutation) is relatively the more important of
the two successive events in the sense that the asymptotic
probability for small u, depends upon «; and B, only
[since for small u, the quantity Pw,/a; is B8,/a,; and
P(t)~1—PB,/a;].
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